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Section 4.1

(9d). We use ε-δ definition. Consider∣∣∣∣x2 − x+ 1
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We make a first choice δ1 = 1/2. Then for |x − 1| < 1/2, that is, 1/2 < x < 3/2. Then
|2x− 1|/|x+ 1| ≤ 4/3. Therefore, for δ = min{δ1, 3ε/4}, we have∣∣∣∣ x2 − x+ 1
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for x, 0 < |x− 1| < δ.

Or, we could use Sequential Criterion. Let limn→∞ xn = 1. By Limit Theorem limn→∞(x2n −
xn + 1) = 1 and limn→∞(xn + 1) = 2. Therefore,

lim
n→∞

x2n − xn + 1

xn + 1
=

limn→∞(x2n − xn + 1)

limx→∞(xn + 1)
=

1

2
.

(12d). We claim that limx→0 sin(1/x2) does not exist. Take the sequence xn =
√

1/(2nπ) and
yn =

√
1/(2nπ + π/2), n ≥ 1. Both sequences tend to 0 as n → ∞. As limn→∞ sin(1/x2n) = 0

and limn→∞ sin(1/y2n) = 1, they have different limit. We conclude that the limit of sin(1/x2) as
x→ 0 does not exist.

(15). (a) We want to show limx→0 f(x) = 0 where f is the function that is equal to x at rational
x and 0 at irrational x. The desired conclusion follows from the observation |f(x)| ≤ |x| and
limx→0 |x| = 0 and the Squeeze Theorem.

(b) f has no limit at x = c 6= 0. Let xn → c be a sequence of rational numbers. Clearly,
limn→∞ f(xn) = limn→∞ xn = c. But, take yn → c be a sequence of irrational numbers, then
f(yn) = 0, so limn→∞ f(yn) = 0. From Sequential Criterion we draw the desired conclusion.

Section 4.2 no. 1bc, 11 cd, 12.

(1b). Since the limit is taken among positive x only, this should be viewed as a right limit (see
below). By Limit Theorem,

lim
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−1
= −3.

(11c). Let xn = 1/(2nπ)→ 0 as n→∞. Then

lim
n→∞

sgn sin 1/xn = lim
n→∞

sgn0 = 0 .

On the other hand, let yn = 1/(2nπ + π/2)→ 0 as n→∞. We have

lim
n→∞

sgn sin 1/yn = lim
n→∞

sgn 1 = 1.

We conclude from Sequential Criterion that the limit does not exist.

(11d). Using the inequality
|
√
x sin 1/x2| ≤

√
x ,
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and the fact that limx→0+
√
x = 0, we conclude from Squeeze Theorem that

lim
x→0+

√
x sin

1

x2
= 0 .

Supplementary Exercises

1. Let f be function defined on (a, b) except possibly at x0 ∈ (a, b). It is has a right hand
limit at x0 if there exists some L such that for all ε > 0, there exists some δ > 0 such
that |f(x) − L| < ε for all x ∈ (x0, x0 + δ) ∩ (a, b). Denote it by L = limx→x+

0
f(x).

Similarly we define the left hand limit of f at x0 and denote it by limx→x−
0
f(x). Show

that limx→x0 f(x) exists if and only if both one-sided limits exist and are equal.

Solution.⇒ . When limx→x0 f(x) = L, for ε > 0, there is some δ such that |f(x)−L| < ε
for 0 < |x− x0| < δ, x ∈ (a, b). Certainly it means |f(x)− L| < ε for x ∈ (x0, x0 + δ), x ∈
(x0, b), and x ∈ (x0 − δ, x0), x ∈ (a, x0). In other words, both one-sided limits exist and
equal.

⇒. Let L = limx→x+
0
f(x) = limx→x− f(x). For ε > 0, there exists δ1 such that

|f(x) − L| < ε for x ∈ (x0, x0 + δ1), x ∈ (x0, b). On the other hand, there exists δ2 such
that |f(x) − L| < ε for x ∈ (x0 − δ2), x ∈ (a, x0). Therefore, by taking δ = min{δ1, δ2},
|f(x)− L| < ε for all x ∈ (a, b), 0 < |x− x0| < δ, that is, limx→x0 f(x) = L.

2. Let f be defined on (a, b) possibly except x0 ∈ (a, b). Show that limx→x0 |f(x)| = |L|
whenever limx→x0 f(x) = L.

Solution. It follows immediately from the triangle inequality ||f(x)| − |L|| ≤ |f(x)− L| .

3. Let f be defined on (a, b) possibly except x0 ∈ (a, b). Suppose that limx→x0 f(x) = L for
some L. Show that limx→x0

√
f(x) =

√
L provided f ≥ 0 on (a, b). Suggestion: Consider

L > 0 and L = 0 separately.

Solution. First, assume L > 0. Given ε = L/2 > 0, there is some δ1 such that |f(x)−L| ≤
L/2 for 0 < |x− x0| < δ1. In particular, it implies that f(x) ≥ L/2 for 0 < |x− x0| < δ1.
Now,

|
√
f(x)− L1/2| = |f(x)− L|√

f(x) + L1/2
≤ 1

(L/2)1/2 + L1/2
× |f(x)− L| ,

for 0 < |x−x0| < δ1. For ε > 0, there is δ2 such that |f(x)−L| < ε× [(L/2)1/2 +L1/2] for
x, 0 < |x− x0| < δ2. If we take δ = min{δ1, δ2}, then

|
√
f(x)− L1/2| < 1

(L/2)1/2 + L1/2
× |f(x)− L| < ε , ∀x, 0 < |x− x0| < δ,

done.

Next, L = 0. Given ε > 0, there is some δ such that |f(x)| < ε2 for all x, 0 < |x− x0| < δ.
It follows that |

√
f(x)− 0| =

√
f(x) < ε for x, 0 < |x− x0| < δ, done.


